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Abstract- The eflect of changmg temperature on the dampmg properties of free vibrations of
sandwich cylindrical panels IS studied in this paper. It IS assumed that the material properties of the
facings and core of the sandwich panel studied change with temperature The effects of the visco­
elastic damping of the core layer and geometrical non-linearities of the vibrating panel have been
included in this study. Dissipated energy is used to investigate the damping. It is found that the
rapidly changing temperature strongly affects the vibration responses and damping properties of
the cylindrical sandwich panels
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length and arc length m the x and r dlrectiom. respecllvely
elastic modulus of the ith layer
transverse shear modulus of the core in the I dlfection
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Poisson's ratio
mass density of the ith layer
slope of the core in the x and 1· directions. respCCl1\ ely

I. lNTRODlX'TI01\

Sandwich panels are widely used in the aerospace industry and in nuclear reactors. These
panels are often applied to insulate the structure from external temperature changes. The
change of temperature usually results in the change of the damping and elastic properties
of the sandwich panels and therefore in their vibration responses. A review related to
thermal effects on structures can be found in a recent paper by Thornton (1992) which
describes development of thermal structures of aeronautical and aerospace industries from
the early days of supersonic airplanes to the more recent challenges presented by hypersonic
fighters.

It is well known that the amplitudes of structural vibrations can be reduced by using
layers of viscoelastically damped materials. The effect of the viscoelasticity on vibrating
sandwich plates was first studied by Oberst and Frankenfeld (1952), who considered the
one-dimensional case of an infinite, two layer plate. in which one layer is made of damping
material. The earliest work on the damping of ordinary sandwich plate, by Plass (1957),
proved that the damping is entirely due to the shear in the viscoelastic core. Since then
many papers have been published on the damped vibrations of sandwich plates (Yu, 1962;
Ho and Lukasiewicz. 1975; He and Ma, 1988). Ho and Lukasiewicz (1976) also investigated
the cylindrical sandwich shells with dissimilar facings. The concept of the complex modulus
was used to analyse the damping properties of the structure.

Only a few studies have been devoted to the non-linear analysis of free damped
vibrations of sandwich structures. Kovac £'1 al. (1971 ) and Hyer et al. (1976, 1978) studied
non-linear vibrations of damped sandwich beams using both theoretical and experimental
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methods. Xia and Lukasiewicz (1994, 1995) analysed damping properties of largely
deformed sandwich plates using the logarithmic decrement and dissipated energy for the
transverse motion.

Temperature is usually considered to be the most important factor affecting the proper­
ties ofdamping materials (Jones, 1974). Nashif et al. (1985) studied the relationship between
the temperature and the properties of different damping materials. Gorman (1985) carried
out a linear vibration study on a composite plate which had temperature-dependent proper­
ties. Less attention has been paid to the analysis of the effects of temperature on the dynamic
response of structures, induding damping. The recent work by Lukasiewicz and Xia (1993,
1995) and Yi et al. (1993) discussed the effects of temperature on the dynamic response of
sandwich plates. The purpose of the present paper is to study the effects of rapidly changing
temperature on damping properties of non-linear vibrations of sandwich cylindrical panels.
The dissipated energy of the structure is analysed and used as a measurement of damping.
The applied model of deformations allows bending, transverse shear deformations and
rotatory inertia to be included in the analysis. Damping is considered by modelling the
viscoelastic material core as a Voigt--Kelvin solid. The Runge-Kutta method is employed
to solve the non-linear, differential equations.

2. NON-LINEAR GOVERNING EQUATIONS

The dimensions and orthogonal coordinate system of the panel chosen for this study
are shown in Fig. 1. The coordinates x and yare in the reference surface of the undeformed
panel and the:: coordinate is oriented in the direction perpendicular to this surface. The
reference surface is assumed to be in the middle of the core. The corresponding displacement
components are Ui' l', and W" with i used to define the displacement of the ith layer.

The assumptions made in the present study are as follows. Each layer is bonded
together perfectly and there is no slide between the interfaces. Layers I and 3 are isotropic
and made of perfectly elastic material. Layer 2 consists of a viscoelastic material which is
able to carry the transverse shear stress. Lines which are normal to the reference surface of
the undeformed core remain straight after deformation, but they do not remain normal to
the reference surface of the panel. The Kirchhoff hypothesis is used only for the facings.
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Fig. I. Geometrical dimenSIOns and coordinate system of sandwich cylindrical panels.



Dampll1g pwperties of sandwich cyhndrical panels 837

Compression effects are neglected, Normal strains in the thickness direction are ignored.
Transverse displacement is assumed to be the same for each layer.

Using the above assumptions. the displacements in each layer (see Fig. I) can be
expressed in terms of five variables u~. rg, ¢. I~ and II' as follows:

III = U~-I.(q)-II ) 2-'::11,

I, =r~-lc(lj;-II,)2-'::lr

II, =U~+I.(¢--\\,)2-'::11',

I = 1'~+I:(lji-1I ) 2-'::11

II: = ug -.::¢

I: = Ig -.::t/J

II = II'. ( I)

where ug, rg are the in-plane displacements in the reference surface of the panel, ¢ and lj;

are the rotatory angles of the core in the x and \' directions, respectively, and w is the
transverse deflection in the.:: direction in three layers, The non-linear strain-displacement
relations of elastic facings are

I I'
lr+-l\'-R-.:: :.,

) I·
11'+' 11'-R-.:: :.,

"', = I

'.;" = II, +r, +~I,(¢, +lj;,)-2(~t.+'::)11' +\1',\\'.,

i::,=U -.::(t>,+~¢'

1 I,

- R-.::11+.ljJ-

L ~ \ "- II, +1" .::( rp +if;,)+(!Jlj;

;; ~ \ = 1\ - (/)

(;:1::- = II -Ij; (2)

In eqns (2), a comma denotes partial differentiation with respect to the corresponding
coordinates. For simplicity. the superscript 0 and subscript 2 of ug and vg are ignored in
eqns (2) and the remainder of the paper, The transverse shear strains in the facings have
been neglected.

The change of temperature causes a thermal expansion of each layer of the panel.
After neglecting the influence of transverse norma) strain, the relationship between the
stresses and deformations for the facings have the following form when thermal stresses
are included (Lukasiewicz. 1989):
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where :1." are the thermal coefficients and Tj are temperature changes in the ith layer.
For the viscoelastic core, the total stress consists of two parts

(4)

where G'I is an elastic stress and Gfl is defined as the stress from viscoelastic damping. When
the Voigt-Kelvin model is used, the stress-strain relationship takes the form:

E,
(Ten = 2(1-:\,~)[en, er~ \\

(5)

~I'1 are the damping parameters determined from experiments, which can also be found, for
example, in the book by Nashif et al. (1985). e are the strain rates in the second layer
core. Relationships (3) and (5) consider thermal stress by including additional terms that
represent the effect of the temperature change Tj in the ith layer. The thermal coefficients
:1. ri and material properties E, and 11, are assumed to be functions of temperature and time.

The dynamic virtual work principle for the thermoelastic body requires that

(6)

where

presents the elastic energy and the kinetic energy of the panel. The dissipated energy takes
the form

(8)

in eqn (7) P, is the mass density per unit volume of the ith layer and p(x,y, t) is the transverse
load per unit area. If we limit ourselves to the study of free vibrations, p(x, y, t) is assumed
to be equal to zero. With the usual integration and variational procedures, eqn (6) can be
reduced to a system of differential equations in terms of five variables U2, V2, ¢, l/J and w as
presented in the following:
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K I(2U" + ()- I')ed C",,) + K, I',,, + Kd2<1>" + (I ~ 1'):d<1> ",,) +:XI K/P:,/+K5(W,,;

+:xf W"I") + I'K" W, - K; (2/1, ( + ( 1- \):x; II" (",,) -t-:XI Kc (21'/1, + (1- 1')11,,.) V;~

+ Kx(211,<D + (I - I'):X; II, <D",,) +:x; K, (2\'11. -+ ( I \)/1" )tp" + \'K" W;

+:X3K7(2<1><1> +2\':x;\f-'\f-' +-(I-I'):xf(<1>,,\f-'+<1>'P,,))+K
I
(I(2/t' W"

+2v:xf W"IV" + (I - I'):X;( W W" + W, W",,)) + :x,K,(2(/I,(<1> ,<D + <1><DJ

+ v:x; 1I,(\f-' , qi + \f-'qi,)) + (1- \):x; II" ($" \f-' + $\f-' "~ <1>" qi + <1>qi,,))

+KIIO+KI2$+KI,/i" +K II =0.

K 2 U", + K I (2:xf V,,,, + ( 1 r) /', ) -t- K j <1>", +-:x, K; C:z; 'f'",! -t- ( I - I')'f',;l

+:X I K, (11/,,! +:d W -+:x K" W" +:X IK· (2\'11, -+ (1- \)/1" )(", + K 7 (rx;l1r V~"

+ ( 1- \)11" r;',,) +:x IK, (2\'11, + (1- 1')11" )<D'I -+ :z IKx(2'1; II, tp,!" + (1 - v)I1,,\f;;l

+ :x IK" IV" + :x I:x, K; (21'<1><1>'1 + h; \f-''f',; + ( I - \)( <1> : 'f' + <1>'f'J)

+:XIK IO (2:x; W"W",/+2\W,IV,.;+( 1-1')( H "W,,+ W, W",»

+:x I:x, K, (2( I'll, (<1>'I<D + <1><D,!) -t- :xf II, ('f'" tp + 'f'tp ,,)) + (1- I' )11, ,(<D: \f-'

+$'f' +<1>qi +<1>qi,)) -+ K II (! + '11 K I2 lV +:X I K li\ + K 21 = O.

K, (2 C, T (l '-I):X; C"" I + K, /',j -t- K, ~ (2<1> , + (I . \):x;<1>,/,,) + (K I" + K'T)<1> + K I5 \f-';,/

+Klx(vV +:x;W/!"I-K "IV +\KI"W -K,(211,l ,+(I-I')/I"rx;O,/,/)

+:x IKx(2\'11,+(1-r)fl )1 ,,-t-K'!I(211,1>, +(1 1):X;II,,<D'I',)+,ucKI6<D

+:x; K 2i1 (I'll, + (1- \)11 .,)tp ,,-II "K I61t - Y., K (2 C,<1> + 21':X I 1',/<1> + (I - v)rx; U,,\f-'

+ (1- I'):X I V:\f-') + K, I (\f-''f' - 'f',,<1» + \'K22 11'<1)+ K.,(2W, W" +2vcx; W~ W;,/

+() ~ \)'1; ( IV, I'V" -+ Ii rI",,))- Y.; K. (2/1, (<1>- ( I ~ \ ):x; II" V,,\f-' + 2vrx!,u, V,/<1>

+ ( I ~ I') Y.III" (' 'f' ) -+ Y. ;K, (2p, <1>q) + 2Ill, ('f' tp -+ \f-'tp ) - 2IT; 11, tp,/<1>

- ( I - \):x; II" ($\f-'" + <1>, qi + <1>qi" + qi 'f')) _. IT, K" It/<1> - '1~ K 7 (<1>' + rx; \f'2 <1>

+ 2(,11,1><1>2...,.. I'P, Y.;\f'<1>tp) -+ (1- \ ):X;fl ,,(1)'f'2 +<1>'f'tp)) + K 12 C+ K24$ + K 25 W; + K4T = 0,

!J. IK~ U:,; +:x IK 1 (2y.; I' + II - \.) I ) + K I' <1> + Y.; A 1-1 (( 1-- I')\f-' + 2:x;\f',I")

+(KIc +:X IK,/)'f' T!J.: K ,( H,,+ Y.; rI"'I") - K I-W + '1; K I" W'I + '1;Kx(2v,u,+(I-v)I1".)0;~

+ :XI Kx (2/1, Y.; 1""" + (1- 1)/1" () +:x; K 2i1 (2\11, + ( I - \')11,· )1>" +:x; K20 (20:; I1r\f,,~

+ (l - \)11" qi, )+ II ,K1- tp -II, K I' W'j - Y. I!J., K (2 v:x ILi: \f' + (1 - V)O:I U,,<1> + 2(X; V~ \f'

+ (I - I') V <1» + K, 1(<1><1>,,'- <1>, 'f') +:xf K'2 It'\fJ +:Xi K21 (2ed W" W,;" + 2v W; W;~

+ (I - \) (W H'" + J'V H'j)) - Y. I'1, K. (2v:x Ill, ( 'f' + (I-\' )!J. I,11" 0,,<1> + 2rx; 11, V,/ \f'

+ (1- \')/1" r;' <1» + '1.; Y., K, (2 \'11. (<1>,,1> + <1><D,) -+ 2'1; p, \f',! tp - 21'11, 1>;\f'

-- (1 - \)/1,,($ 'f' + $'f' + <1> qi + $'1<1>)) -:X;!J.; K" It'\fJ - (X; '1.~ K 7 (<1>2 \f-' + (X;\f"

+ 2(1'11,<1>'f'<D + II 'f'2 tp) -+ (1 - \')11, (<1>1>'f' -t- <1>2 tp)) -+ y.K I, V+ !J.flV + (XT K25 w", + K 5T = 0,

- K, (U,.- + '1; C - \K,. l - '1. 1K d V, , + '1; 1"1"'1) - Y. IK" V" - K I d<1>.;:; + rx;<1>,;~,/)

+ (K 16 +\'K I,,)<1>,- '1. hi ,('f'"" + :x;'f'",!,!) + (K I • + y.f KI,,)\f-',! + K 2d We;;; +2(X; W",/~

+:Xi W'/'''/'I) -KI " W --1\'1- IV"" +K'·('1.f W +- I'W )+ K2-<, W+ KorW;+K7T W"

+ Kn { W. + '1.; It',;,,) + h."e - Y. IK" 1"'1+ PcK J(,1> , + 11"KI7tp,,- I1cKI6 W.;c-l1roKI7 W'I/~
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+ K,,!J.i'-K IO (2(C" W, + U, W")+2v:x~([/;,,W" + U; Wryry)+(l-v)cd(U"" W,+2U,ryW,ry

+ U ," ~V,)) -:XI K lo (2\'( V"I W, + V" W,J+2:x~( V'I" W'I + V'I W,/ry) +(l-v)(V,ry w"

+ n', W" + I' . W,,)) + K c1 (2($.IV, +$, W;J +2v:xT($"1 W" +$, W'JlI)

+ (I ~ v):d($"'i IV, +2$" W", +$'11'1"1)) +:x~ K c1 (2v(\fI."1 W;+ \fI" W;;)

+ 2:xi (\fI"" ~V" + \fI" W,/,,) + (1 - \')(\fI:" W, + 2\f1, W;'I + \fI,; Wry))

-2ni1.J(d IV\ + W" W'JlI) + (I - v)1.r1.,K,( W
2
;,,_ W;; W"ry) + K 10 (v( W~+2W"W)

- 1.,K!o(3 W
2
; W, +4:x; W'I W." IV + 3:xi W~, W"" + 1.~ W~/ W" +y.~ W~W",)

- K I1 (0' - 1.
1
K I1 (',,-K2 ,i'h. - 1.; K,/P" + K\I (W;; +cd W"ry)+Kn W + K 9T = 0, (9)

where the coefficients K, and K'T are functions of the material properties, geometrical
parameters and temperature. If there is no temperature change, the coefficients KiT disap­
pear. The coefficients in the above equations can be found in the Appendix. For simplicity
the Poisson's ratios for three layers are assumed to have the same value VI = 1'2 = 1'3 = v.
The diaeresis over U, V, $, \fI and W denotes the second order differentiation of that
variable with non-dimensional time T. The dimensionless parameters used in eqn (9) are
given b!

1..,1J = $. 1.,tj; = \fl. \1"1, = W. wl l = U, 1'/1 1 = V,

RI 1 = k Pc PI = r., P,PI = r,. 11 /1 1 = m, 12 /1 1 = k,

(10)

.1. TEMPERATURE EFFECT

A typical effect of temperature on the properties of the sandwich core materials
(Young's and shear moduli and the coefficient of the viscous damping) is presented in Fig.
2. Generally, the curves for different materials have a similar shape. Three typical distinct
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Fig. " Effect of temperature on the properties of sandwich core materials.
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regions can be observed. Poisson's ratio depends weakly on the temperature change and is
assumed to be a constant (Kamiya and Fukui. 1l)~2). In the example discussed in this
paper, the relationship of Young's and shear moduli and the damping coefficients versus
temperature were approximated by the following simple formulae:

where To. TEl and TI <: are certain reference temperatures. The coefficients in eqns (11)
and (12) are material dependent. The following values have been used in the numerical
calculations for the example discussed:

11 = 3. ( = O.3~5. (2 = 0.38. ox T,.I
= 5.

T"
(13)

The curves for DEm.I\' G GIlI'1\ and illlm'l\ approximated using the above coefficients are
presented in Fig. 2. They can simulate well the temperature-dependent behaviour of a
typical damping material. for example. the material G.E. SMRD in the temperature range
IOO-200F (Nashif cl ill .. 1l)~5). The first region shown in Fig. 2 is characterized by an
increase of the damping properties with the decrease of the value of the elastic modulus of
the core. In the second region a further decrease of the elastic stiffness is observed while the
damping factor takes its maximum value. The third region is the region where both the
elastic moduli and the damping t~lctor decrease.

When a panel is exposed to a changing temperature field. the temperature T at an
arbitrary point of the panel can he approximated [w the equation

T T'TC~::Il)T

with the resultant characteristic temperatures T' and T' assumed in the form

(14)

T I = Ii iTd::. T' i.T:: d::. (15)

In the above equations Ii is the thickness of the panel.:: is the transverse dimension measured
from the reference surface of the panel and i is the corresponding coefficient of heat
exchange. However. eqns (15) are difficult to use when T is still unknown. The temperatures
rand T2 can be obtained by solving the following equations (Lukasiewicz, 1989):

-16K,h)(T ' +T)

(30K, h)( r- T), (16)

where ~ is the Laplace operator. T IS non-dimensional time. K r is the coefficient of heat
conduction. C is the coetticient of the specific heat and jI is mass density. T+ and T- are
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temperatures given at the upper and lower surfaces of the panel. The above equations are
independent, linear, differential equations of second order and can be solved with respect
to T 1 and T2

• With the approximation of eqn (16), the temperature defined in eqn (14) is
linearly distributed across the thickness of the panel.

It was assumed in the example presented here that the external temperatures increase
linearly with time, i.e.

(17)

T(~ and Til are the reference temperatures for the upper and lower surfaces of the panel at
time r = O. T,+ and T,- present the rate of temperature change with time. If the temperature
was uniformly distributed on the surfaces, then using eqns (17) and (16), the temperature
in eqn (14) can be obtained in the following form:

'1-

+ 0.5( T/ + T, )r)~; (0.5(Tt - To) e- 5e,

where ~ is a material-dependent coefficient (12Kr)!(ph 2Cy ). The heat transfer properties of
the material play an important role in the temperature distribution. We observe that the
temperatures in these layers do not change linearly with time. If rand T- are linear
functions of time, the average temperature f in the panel can be approximated by (see the
Appendix) :

(19)

The coefficients A I and A 2 depend on the temperature field and material heat transfer
properties.

The temperatures in the layers of a sandwich structure must be consistent. This means
that the temperature r of the ith layer is equal to the temperature T- of the (i + 1)th layer.
The heat transfer property of the viscoelastic core is different from that of the facings. The
average temperatures in three layers take the form:

f'=(e 1"'+O.9772x(l-e 175T)+4Xr)(~)
Til To 0

f1=(e I"T+0.9972X(l-e-175T)+0.5Xr)(~).
Til To 0

(20)

The power of the exponent is very large as shown in above equations, due to the numerical
value of the coefficient (l2K r )/(ph 2C) for typical materials. That means this term disappears
very quickly with time. and later the equations are linear functions of time; but this term
initially has a significant effect on temperature change. (T/To)o is the reference temperature
ratio at time r = O.

4. SOLUTION METHODOLOGY

The solution of eqn (9) was obtained for a simply supported cylindrical panel. In this
case, the response functions which satisfy the boundary conditions can be chosen as follows:
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L = U(l) cos (n~) ~in (7[/11

I' = 1'(1) sin (n;) cos(rrJil

<D = <D(I) cos (n~) Slll (mil

'fl = 'fl(l) sin (rr;) cos (mil

If = W(I)sin (rrCl sin (mil,

X4.1

(21 )

A set of five coupled. non-linear. ordinary ditferentwl equations was obtained for the
time-dependent function. C(I). 1'(1). <D(I). 'fl(I). rV(I). by substituting eqns (21) into eqn
(9) and multiplying the resulting equations by cos (rr;) sin (nl1). sin (n:;) cos (mil.
cos (nn sin (n11). sin (n:;) cos (mil and sin (rr:;) sin (nil. respectively. and by integrating from
zero to one with respect to :; and Ir This set of non-lInear equations can be written as:

L mi/i;(l) + L ('i;ii;(I) + L k"II;(I) + I I d'lill;(l)II,(I)-t )' I c",II;(I)(i/c(l)
i= I ; I iiiI, I I

+ I I Il,,;iI (I)lI i (1)11;(1)+ I I Ll!'i;(/,(l)lIdl)£i;(I)-h,t = 0
j, 1.1 i ,I ] ~ I

i.j./d = L"" 5, (22)

Here. 11,(1) are the generalized coordinates which rcpresent L( I). I '(I). <D(i). 'fl(1) and 11/(1).
respectively. m" are the inertia coefficients. ('" the lInear viscous damping coefllcients and
ku the linear stiffness coefficients, il if, and are quadratic and cubic non-linear stiffness
coefficients. ("Ik and ql/ki are quadratic and eubic non-linear damping coefficients. respectively
and hiT is the temperature equivalent loading, These temperature-dependent coefficients are
not presented here, As can be seen from eqns (22). the non-linear damping is included in
terms of quadratic and cubic forms, These kinds of equations were not found in the
literature, The set of equations (22) was solved by the Runge-Kutta method which gave
numerical results for C. V. <D. 'fl and Wand their rates (. V. ci:>. ~ and Wat any time,

To measure the damping of the sandwich cylindncal panels. the dissipated energy [eqn
(8)] is used. Introducing the obtained numerical results of L'. V. <D. 'fl and Wand their rates
0. V. ci:>. ~ and Ii' from eqn (22) into relations (2) ()) and then into (8). the change of
dissipated energy with time can be ~tudied (Figs 4 h),

, J{FSI LTS .\"D DISI I ""10'\

In the examples presented III this paper. the hekmour of plates and cylindrical panels
is compared in a set of diagrams. The geometrical and material parameters used in this
paper for both panels and plates have the same \ alues at the initial time of vibration, The
material properties change with time due to the changc of temperature (see Fig, 2), It was
assumed that the temperature changes with time according to eqns (20). The curvature
1, ;R = 0.0 1 was used for the panel while I, R = 0 f(lr plate,

12 1, = 7. I, I F F, I. L: I:' 0.002. u h =
,

I, II = 0.005.

P2 p, = (L05. II; P I. G f~'1 - (; F 004. \', = I'. = \', = 0,333.

II II 01 x 10 0 p,1 L = OA 10 1 1_.

The basic values of the lirst layer made of sted are /:'1 = :2 X lO" N m 2. p, = 8 X 10'
Ns2 m 4 and I, = 0.00 I m, A typical free vibration of a sandwich cylindrical panel based
on the above parameters l~ presented in Fig. 3, It can he seen that the transverse deflection
W changes with time irregularly, This phenomenon IS due to the coupling of the in-plane
displacements C and I' with the transverse displacement W It was found that when the
material properties are tempera ture dependent. the change of temperature causes the change
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Fig. :1 Typlcalmotlon of a sandwich cylindrical panel.

of motion (Fig. 3). When the temperature increases with time, the material becomes softer.
That results in a larger amplitude and smaller non-linear frequency of the motion for the
panels.

Figures 4-6 show the effect of lemperature on the damping properties of sandwich
plates and panels in terms of dissipating energy. In all three figures, which correspond to
the temperature changing in three different regions in Fig. 2, the ratios of dissipating energy
to total energy are considerably different for structures in a constant temperature field or
in a changing temperature field. In general, we can say that the ratio of the dissipating
energy to the total energy for an unheated sandwich structure is always much smaller than
that of a heated one. If the material properties change with temperature according to Fig.
2, the damping of the vibrating panel always increases with temperature even if the damping
parameter {I,/ of the viscoelastic layer decreases in some regions. This phenomenon can be
explained by the fact that the damping properties of the sandwich structure depend not
only on the value of the damping parameter Pu of the second layer, but also on other
material constants such as Young's modulus E and shear modulus G, the latter constants
being even more important. A softer structure can result in a larger amplitude of vibration
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(Fig. 3), however it can also cause a larger dissipating energy ratio. The effect of the change
of stiffness is more substantial than the change of the damping parameter Il. This can be
concluded by comparing the results in Figs 4 6 with the result in Fig. 7. In Figs 4-6
the differences of the energy ratios for temperature affected and temperature unaffected
structures are very large. In Fig. 7 the stiffnesses of the materials are assumed to be
unaffected by the temperature, therefore only the change of the damping parameter Ilu can
affect the damping properties of the sandwich structure. The results shown in Fig. 7 indicate
that the difference of energy ratio between temperature affected and unaffected structures
is small in this case. When the temperature is assumed to be changed according to the third
region of Fig. 2. the damping parameter p" decreases with temperature. Therefore the total
dissipating energy for the heated panels is always smaller than that of unheated ones in this
temperature region: but a larger value of )1 can still cause more damping in the sandwich
structure.

It is also noticed that panel I (I, II = 7) tS characterized by greater damping than
panel 2 (leU, = 5). which means that a thicker \lscoelastic layer gives more damping to the
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structure (Xia and Lukasiewicz. 1994. 1995). When the effect of the curvature is studied, it
is also found that the plates show a stronger damping than panels. Larger curvature results
in less damping.

h. CONCLLSION

As can be observed from the results obtained the effect of the temperature on the
damping of sandwich structures is considerable. The major reason for the damping in the
sandwich panels is the viscoelastic core. As the temperature affects the core, the damping
of the structure increases when the temperature rises. However, at the same time the
structural stiflness decreases. It \vas found that an increase of the damping is of lesser
importance for the behaviour of the structure than the decrease of the stiffness. The damping
increases with the increase of the temperature. but simultaneous softening of the structure
can cventually cause larger amplitudes of vibrations.
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,\PPENDIX: COEFFICIENTS FOR EQN (9)
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T is time. T,(T) is the time-dependent temperature in the rth la\LT .Ind r I' the thickness of the ith layer


